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STABILITY OF NON-SIMILAR SHEAR LAYERS 

M. G. MACARAEG 
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ABSTRACT 
The present study is concerned with the stability and transition of a spatially evolving wake emanating 
from a splitter plate. Temporal linear stability calculations at different streamwise locations indicate 
significantly higher growth rates for mean flow profiles which occur near the trailing edge. Spatial simulations 
using these near wake mean flows exhibit non-linear roll-up for a case with Mach numbers of 2.76 and 
1.87 on either side of the wake. If a similarity shear layer mean flow profile with these conditions is utilized 
in the simulation, no roll-up is obtained. 
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INTRODUCTION 
Supersonic combustion at high Mach numbers has become an important area of study for 
scramjet engine design. It is imperative that the shear layer between the two adjacent high-speed 
streams emanating from the scramjet be highly unstable so that fuel-air mixing is enhanced by 
turbulence. Past theoretical1-3 and experimental studies4 indicate a sharp drop off in mixing 
efficiency as Mach number is increased. Theoretical studies of shear layers have used 
simplified mean flows, such as hyperbolic tangent or similarity solutions. Chen et al.s studied 
the evolution of a temporally evolving wake assuming a Gaussian profile for the mean flow. 
The effect of Mach number and three dimensionality has been discussed via simulation and 
inviscid linear stability theory. Sandham and Reynolds6 investigated the spatial evolution of an 
incompressible wake emanating off of a splitter plate, contrasting the physics of a forced versus 
unforced flow. Recent evidence7 indicates that actual scramjet experiments do not suffer a great 
loss in mixing efficiency as Mach number increases1-5. The following study focuses on possible 
explanations of such discrepancies by considering the effect of Mach number on spatially evolving 
wakes. 

MEAN FLOW PROFILES 
The mean flows utilized in this study are solutions of the compressible boundary layer equations: 

(1a) 

(1b) 

(1c) 
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where and are the streamwise ( ) and normal ( ) velocity components, the temperature, 
pressure, density, viscosity, and conductivity. is the universal gas constant. The flow 

is considered two dimensional. The specific heat at constant pressure, is assumed constant. 
Sutherland's law is assumed for viscosity, and conductivity is assumed to be proportional to 
viscosity. 

Boundary conditions for the above system are given below: 
(1e) 
(1f) 

where subscript 1 denotes the faster stream, and subscript 2 the slower stream. The final equations 
define an initial-boundary value problem. In the timelike (x) direction, straightforward use of 
fully-implicit, high-order backward finite-differencing is used to march the solution forward. In 
the normal direction, a spectral collocation method is employed. Details of this mean flow 
solution technique have been given8 for a general curvilinear coordinate system and will not be 
repeated here. However, specific modification to this procedure necessary for the evolving wake 
solution are discussed below. 

The initial condition is taken from similarity solutions9 for compressible boundary layers. An 
approximation for the flow just after the trailing edge of the splitter plate is obtained by patching 
together two boundary layer profiles. It is assumed that the temperature at the plate for the 
'fast side' is the average of the adiabatic wall temperatures for the two boundary layer flows 
as given below: 

(2a) 

and are free stream temperatures, and and are the adiabatic temperatures of 
each side, respectively. 

The normalized plate temperature on the 'slow side' is given by: 

(2b) 

since = 
Flows are therefore considered non-adiabatic. The final equations are solved in non-

dimensional form, where velocities and temperature are scaled by their free stream values and 
pressure is non-dimensionalized by 2. All lengths are scaled by a modified displacement 
thickness. Variables which follow are considered non-dimensional. 

The mean flow profiles considered in the present study are taken sufficiently far from the 
splitter plate trailing edge so that the singularity in the boundary layer equation has no effect 
on the mean flow solution. It should be noted that the effect of this singularity is confined to a 
very small neighbourhood (O(Re-3/8)) of the trailing edge10. 

The evolving mean flow velocity profiles are compared with experimental profiles11 in Figure 1 
for various downstream locations aft of the trailing edge. Conditions are chosen to match the 
experiments carried out by Demetriades11, and are given in Table 1. 

LINEAR STABILITY 
Temporal linear stability analysis is performed at the streamwise locations depicted in Figure 1. 
Growth rates (ωi) versus streamwise wavenumber a are given in Figure 2. Note the appearance 
of a higher mode at stations 1 and 6. This mode at higher a becomes weaker as the flow progresses 
downstream of the trailing edge. In addition, growth rates clearly decrease as the mean flow 
goes further downstream of the trailing edge (i.e., as a similar mixing layer profile is approached). 
Since the two inflection points of the wake profile render this flow more unstable than the 
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MEAN FLOW PROFILES 

Table 1 Flow properties 

Parameter 

M1 
M2 
U3/Ul 
*T01 = T02(K) 
T1 
T2 
Reδ** 

Case I 

2.76 
1.87 
0.8198 

322.2 
127.7 
189.6 
50000 

Case II 

0.6 
0.4065 
0.6775 

322.2 
287.7 
298.0 
50000 

* Stagnation temperature 
** Reynolds number in terms of modified displacement thickness 

dominant single inflection point of a mixing layer12, these observations are not surprising. The 
station 41 profile is essentially that of a similarity free shear layer. 

If we define a convective Mach number based on the phase speed of the maximally amplified 
disturbance13 some interesting trends may be noted. The Mach numbers 

Mc1=M1 Mc2 = M1 **0.5 (3) 

Are the convective Mach numbers with respect to the fast and slow stream, respectively. Table 2 
lists Mc for each station of Figure 2. Note that for profiles near the trailing edge the 
maximally-amplified mode has a phase speed less than the slower stream's velocity. The phase 
speed of the maximally-amplified disturbance increases as the profiles approach similarity. 

The structural evolution of the unstable disturbance at station 1 is given in Figure 3 for various 
streamwise wavenumbers. Depicted are the temperature, , and normal velocity, , disturbance 
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Table 2 Convective Mach numbers for case I: U2/U1 = 0.8198; T2/T1 = 1.485 

Station 

1 
6 

13 
20 
41*** 

am* 
1.545 
1.625 
1.750 
1.711 
0.7669 

ωmax 

(1.167,0.2027) 
(1.265,0.1857) 
(1.427,0.1574) 
(1.459,1229) 
(0.7982,0.02897) 

0.7548 
0.7783 
0.8156 
0.8527 
1.0829 

Mc1 

0.6768 
0.6120 
0.5088 
0.4066 

-0.08294 

Mc2 

-0.1472 
-0.09410 
-0.009423 

0.07452 
0.5960 

* a corresponding to ωmax 
** Phase speed 

*** Nearly self similar 

DEVELOPING WAKE GROWTH RATE CURVES 

eigenfunctions. Note that as a increases the multiple lobe structure of the mode becomes more 
dominant. 

For comparison, a second case is studied in which we retain the same Mach number ratio 
and stagnation temperature as the previous case. However, both streams are taken to be subsonic. 
These conditions are given in Table 1. Linear stability analysis at comparable stream wise locations 
as the previous case are performed. Growth rates versus a are given in Figure 4 for stations 1, 
13 and 41. For comparison, growth rates from the supersonic case are also given from Figure 1. 
No higher mode similar to Case I is seen for the subsonic case. As expected, the maximum 
growth rates are much higher for the lower Mach number case. However, it is found that the 
decrease in the growth rate with increasing Mach number is much smaller if mean flows near 
the trailing edge are compared. This difference is emphasized in Figure 5, which depicts growth 
rates versus a for the high and low Mach number case for station 13 and 41, respectively. Note 
that station 13 displays approximately a factor of two change in the maximum growth rate 
between the two cases, whereas, station 41 (nearly similar profile) displays a factor of four 
difference between the two cases. Clearly the effect of Mach number is greater for the nearly 
similar mean flows. 
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SPATIAL SIMULATION 
A spatial non-linear simulation is performed utilizing the spatially evolving mean flow described 
in the previous Section. The governing equations are the compressible Navier-Stokes equations 
written in Cartesian coordinates for two-dimensional flow. A Chebyshev spectral discretization 
is utilized in the normal direction, and a fourth-order compact difference scheme is used in the 



84 M. G. MACARAEG 

MACH NUMBER EFFECT ON GROWTH RATES 

streamwise direction. The time-stepping scheme is third-order and semi-implicit. A non-reflecting 
outflow boundary treatment is effected by appending a short 'buffer domain' to the end of the 
computational region, a technique developed by Streett14. In this region, typically only one or 
two primary wavelengths long, upstream reflections of disturbances from the outflow boundary 
are prevented through two modifications to the Navier-Stokes equations. First, the viscous 
terms responsible for streamwise-elliptic behaviour are multiplied by a smooth attenuation 
function which goes to zero at the outflow boundary. Second, to avoid upstream feedback due 
to the acoustic or pressure terms, the imposed base- or mean-flow is modified in the buffer 
domain so that the total streamwise velocity at the outflow boundary is supersonic. With all 
characteristics of the inviscid part of the equations outgoing at the boundary, therefore, the 
interior time-stepping scheme may be used to compute the solution at the boundary. At the 
inflow, the mean flow field plus harmonic disturbance is imposed throughout the spatial evolution. 
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Two spatial simulations are presented. Maximally-unstable disturbances from stations 20 and 
41 (near similarity) in case I are used as initial conditions along with the mean flow profiles 
from these stations, respectively. A 2% amplitude is imposed on the linear dusturbance in both 
cases. Figure 6a and 6b depict total vorticity contours from station 20 and station 41, respectively. 
The simulation has progressed roughly 8 wavelengths downstream. A very strong roll up occurs 
if station 20 is used as the mean flow as depicted in Figure 6a. However, no vortex pairing and 
roll up is obtained when station 41 is utilized for the mean flow (Figure 6b). 

CONCLUSIONS 
A study of the linear and non-linear evolution of a spatially evolving wake is presented. The 
appearance of a higher mode for near wake profiles is seen when the free stream Mach numbers 
are supersonic. Downstream of the splitter plate, growth rates weaken, and this higher mode 
stabilizes before the flow asymptotes to an essentially similar profile. Contrasted with this 
supersonic flow are evolving wake profiles with subsonic free stream Mach numbers. It is found 
that the decrease in growth rate with increasing Mach number is much less for non-similar mean 
flows near the trailing edge. The non-linear spatial evolution of the supersonic wake exhibits a 
strong roll-up for the highly unstable near wake-region profiles. However, as similarity is 
approached further downstream of the splitter plate, no roll-up is obtained for this high Mach 
number flow. 
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